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The chaotic low-energy region of a simplified Fermi-Ulam accelerator model is investigated numerically to
determine the average energy and number of collisions as functions of time. We find that these properties
exhibit scaling when the oscillation amplitude of the moving wall is small. Following a transient regime, the
average energy increases in time, reaches a maximum and then shows a surprising slow decay.
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I. INTRODUCTION

The Fermi accelerator is a dynamical system originally
proposed by Fermi �1� to describe cosmic ray acceleration.
Since then, different versions of this problem were proposed
and studied by several authors. One of them is the so called
Fermi-Ulam model �FUM� �2,3� that consists of a bouncing
ball confined between a fixed rigid wall and a periodically
moving one, representing an external time-dependent forc-
ing. Without the external forcing the system is integrable; the
time-dependent perturbation causes it to be nonintegrable.
Although integrable and ergodic dynamical systems are rea-
sonably well understood, quantitative descriptions of nonin-
tegrable systems are still lacking. In particular, we still lack a
deep understanding of how time-dependent perturbations af-
fect the dynamics of Hamiltonian systems. Thus it is of in-
terest to study such perturbations in simple systems.

The FUM may be described in terms of a two-
dimensional measure-preserving map. We review the princi-
pal characteristics of this representation briefly. Of note is a
set of invariant spanning curves in the phase space for high
energy �3,4� that prevents unlimited growth of the energy
�i.e., there is no Fermi acceleration�. A chaotic sea involving
a set of KAM islands is observed in the low-energy regime.
As noted, when the amplitude of the moving wall is zero the
system is integrable. As soon as the amplitude is different
from zero, an integrable-chaotic transition occurs with the
appearance of a chaotic sea �5�. This transition implies that
average quantities are described by scaling functions when
the collision number is an independent variable �6�. Finally,
chaotic regions limited by two invariant spanning curves are
observed at intermediate energies.

A version of this problem in a gravitational field is the
so-called bouncer �7�, which exhibits Fermi acceleration un-
der certain conditions. The difference between the two mod-
els, as regards Fermi acceleration, was explained by Licht-
enberg et al. �8�. Hybrid versions �9� involving the Fermi
model and the bouncer and the Fermi model with energy
dissipation �10� have also been studied. The quantum ver-
sions of these models have also been investigated in the lit-
erature �11–13�. It is worth mentioning that these one-

dimensional classical systems allow direct comparison of
theoretical results with experimental ones �14,15� and that
the formalism used in its characterization can immediately
be extended to the billiard class of problems �16–19�.

In this work, we are interested in the chaotic sea of the
simplified FUM. We study the average energy and average
number of collisions as functions of time, and show that they
are described by scaling functions when the amplitude of
oscillations is small. Moreover, the exponents characterizing
the scaling are different from those obtained when the colli-
sion number is the independent variable �6�; we were not
able to find a relation between the two sets of exponents. We
also determine the temporal evolution of the average energy.
After a transient, it increases in time, reaches a maximum
and then decays slowly at long times. This slow decay is
surprising for two reasons. �i� When we consider the colli-
sion number n as the independent variable the average en-
ergy reaches a constant value when n is large. �ii� The first
investigations of the FUM centered on the question of un-
bounded growth of the energy �Fermi acceleration�, showing
that this is not possible; here we have, at least for the sim-
plified FUM, a decreasing average energy.

This paper is organized as follows. In next section we
define the simplified FUM and the quantities of interest. In
Sec. III we present and discuss our results. Finally, a sum-
mary is provided in Sec. IV.

II. THE SIMPLIFIED FUM

The one-dimensional Fermi-Ulam accelerator model de-
scribes the motion of a classical particle bouncing between
two parallel rigid walls, one of which is fixed at the origin
�x=0�, while the other moves periodically in time. The posi-
tion of the moving wall is given by xW�t��=x0+��cos�wt�
+�0�, where x0 is the equilibrium position, �� is the ampli-
tude of oscillation, t� is time, and w is frequency. After scale
changes in time �t�= t�w� and in length Xw=xw /x0, we can
work with nondimensional variables. In particular, we have
that XW�t�=1+� cos�t�+�0�. Now, the only parameter of the
system is �=�� /x0. Note that the particle moves freely be-
tween impacts. We will describe the system by a map
T�Vn ,�n�= �Vn+1 ,�n+1� which gives the velocity of the par-
ticle and the phase of the moving wall immediately after the
particle suffers a collision with it. We will use a simplifica-
tion �20� in our description. We will suppose that the “mov-
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ing wall” is fixed but that, when the particle suffers a colli-
sion with it, the particle exchanges momentum as if the wall
were moving. This simplification allows us to speed up our
numerical simulations substantially as compared with the full
model. It is valid when the velocity of the particle is larger
than the wall velocity. Moreover, the structure of the phase
space is essentially the same as that of the original model �5�,
with the chaotic sea in low-energy region, KAM islands sur-
rounded by an ergodic sea, the position of the first invariant
spanning curve, and existence of others chaotic regions lim-
ited by spanning curves in sufficiently high velocities. Incor-
porating this simplification in the model, the map is written
as �2�

T = �Vn+1 = �Vn − 2� sin��n+1�� ,

�n+1 = �n +
2

Vn
mod 2� .

. �1�

The term 2/Vn specifies the time interval between two
successive collisions of the particle with the “moving wall,”
while −2� sin��n+1� gives the corresponding fraction of ve-
locity gained or lost in the collision in terms of the normal-
ized amplitude � of oscillation. The modulus in the equation
is introduced to prevent the particle leaving the region be-
tween the walls.

Let us define V2�t�� and N�t�� as the square velocity and
the number of collisions at time t�. We are interested in the
temporal evolution of the dimensionless energy �E
=2 energy/mx0

2w2� and number of collisions �N� averaged
over M realizations, characterized by initial phase values of
the moving wall �0, randomly chosen in an interval I. This
interval and the initial velocity V0 must belong to the chaotic
sea. If V0 is small enough we have that I= �0,2��. Moreover,
we consider that the particle starts its motion from the mov-
ing wall position with velocity V0. Namely,

E�t,�,V0� =
1

M
�
j=1

M

Vj
2�t� , �2�

N�t,�,V0� =
1

M
�
j=1

M

Nj�t� , �3�

where j refers to a realization. Note that these orbits, gener-
ated from �V0 ,�0�, belong to the chaotic sea. We define vari-
able t as t= t�−T1, where T1=2/V0 is the time of the first
collision of the particle with the moving wall. In this way, we
have that the time t starts at the first collision instant.

We are also interested in another kind of average. We first
consider, for example, the average of the square velocity
over the orbit generated from one initial phase �0

V2¯ �t�� =
1

t�
�

0

t�
V2���d� . �4�

Since the velocity is constant between two successive colli-
sions, the integral in above equation is not difficult to solve.
Then we consider an ensemble of M different initial phases

Ē�t,�,V0� =
1

M
�
j=1

M

V j
2¯ �t� . �5�

Note that we have again set t= t�−2/V0.

III. RESULTS

Let us first discuss some aspects related to the numerical
simulations. Although time t is a continuous variable, we
evaluate the averages defined in Eqs. �2�, �3�, and �5� at
discrete, logarithmic spaced, values of t : t1 , t2 , . . . , tN. Note
also that the map, defined in Eq. �1�, give us the velocity
after each collision with the moving wall and that the abso-
lute value of the particle velocity is constant between two
collisions with the moving wall. Suppose that we want to
determine the energy at time t1. We know that the particle is
at the moving wall position with initial energy V1

2 at t=0 and
that the second collision occurs at tc=2/V1. We must con-
sider the following procedure. �1� If t1� tc, the energy of the
particle at t1 will be E1=V1

2. �2� Else if t1� tc, a collision
occurs at time t= tc=2/V1 and the particle has its velocity
changed to V1. Now the next collision time is given by
tc=2/V1+2/V2.

If case 1 is true we have determined the energy. Otherwise
�case 2�, we update the velocity and the next collision time.
If now t1� tc �case 1� the energy at t1 is given by E1=V2

2.
However, if t1 is still larger than tc, we repeat case 2, updat-
ing the two variables V and tc. In fact, we repeat the com-
plete procedure until t1 becames larger than tc. Then we up-
date the energy variable. In this way we determine E1�t1�. A
similar procedure is repeated for t2 , . . . , tN with appropriate
time intervals. We have just evaluated the energy E1�t� at the
values t1, t2 , . . . , tN of time, for the first sample of the en-
semble �particle 1�.

Following the same lines, we can determine the values of
the energy E2�t1�, E2�t2� , . . . ,E2�tN� for the second sample
�particle 2 with a random initial phase�. In this example, the
ensemble average of the energy defined in Eq. �2� with M
=2, can be written as E�t1�= �E1�t1�+E2�t1�� /2 , . . . ,E�tN�
= �E1�tN�+E2�tN�� /2. Each one of the other quantities

�N�t ,� ,V0� and Ē�t ,� ,V0�� can be numerically evaluated by a
similar reasoning.

Let us now discuss the results obtained by numerical
simulations. Figure 1�a� shows the behavior of the average
energy E�t ,� ,V0�, when V0 is small �V0��� for four differ-
ent values of the parameter �. We see that the average energy
is constant up to a time t1, grows up to time t2 and then
decays slowly for large time. For t	 t2 we expect that the
average energy behaves as

E�t,�,V0� 	 g���t−
, �6�

g��� 	 ��. �7�

To obtain 
, we first perform a best fit in the long time
regime for each value of �. For seven values of �, varying
from 5�10−5 up to 5�10−3 we find the minimum and maxi-
mum values of 
 are 0.043±0.001 and 0.061±0.001, respec-
tively. Then we evaluate the average exponent. In order to
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obtain � we consider plots of E�t�t
 vs t and determine the
stationary value g��� for different values of �. A best fit of
the plot g��� vs � furnishes the exponent �. An average over
these seven values of � yields 
=0.055±0.005 and �
=1.07±0.03. We emphasize that the average energy decays
in time. This happens because in each of the samples, the
particle eventually has a very low velocity and remains for a
long time �2/V� with low energy. Therefore, at a time t, there
are many realizations in which the particle has very low en-
ergy. These realizations are directly related to the time decay
of the average energy. On the other hand, when we consider
the number of collisions n as the independent variable �6�,
E�n� approaches a constant value for large n. In the latter
description, the time that the particle stays with a low veloc-
ity is not considered at all. High and low velocities play a
similar role. We note also that t2 varies with � as

t2 	 �−z. �8�

Therefore, performing a power law fit in the t2�� graph we
obtain that z=−1.49±0.02.

A similar analysis can be done for the average number of
collisions N�t�. From Fig. 2 we see that N�t� grows in time.
For t	 t2, its behavior can be described by

N�t,�,V0� 	 �
t�, �9�

with �=0.943±0.001 and 
=0.52±0.01.
Before introducing a scaling description of the average

energy, we must discuss the two characteristic times t1 and t2
evident in Fig. 1�a�. In fact, t1 is the time of the second
collision, and is related to an initial transient. Therefore we
have only one characteristic time t2, separating two regimes.
However, the power-law growth for t� t2 is affected by the
existence of t1. Between t1 and t2 we have a crossover re-
gion, implying that it is almost impossible to determine the
growth exponent. The behavior associated with t1 can be
estimated by a simple argument. After the first collision,
which occurs at t�=T1=2/V0, we have that V1=−V0
+2� sin�T1+�0�. Evaluating V1

2 and taking the average in �0

we obtain 
V1
2�=2�2+V0

2. Making the approximation that E
	
V1

2�, we obtain

E�t� 	 2�2 + V0
2. �10�

Noting that 
V�t��� can be very different from 
V1�=−V0 due
collisions with the fixed wall, we approximate 
V�t��� by
�
V1

2�. Using t1=T2−T1=2/ 
V�t���, we obtain

t1 	
2

�2�2 + V0
2

. �11�

We can see in Fig. 1 that the energy curves do not change
their values until the time of the second collision t1, given by
Eq. �11�. After that new collisions occur and the energy
curves have the initial growth. The above two equations can
be used to determine the scaling exponents a1, b1, and c1
defined by the scaling form of the average energy, namely,

E�t,�,V0� = lE�la1t,lb1�,lc1V0� . �12�

Here l is the arbitrary scaling factor. When V0��, we obtain
from Eqs. �10� and �11� that E
�2 and t1
�−1. Choosing

FIG. 1. �Color online� Log-log plots of the average energy E�t�
as a function of time t for �a� four values of the parameter � and
initial velocity V0=10−6 �V0��� and �b� four values of the param-
eter � and four values of the initial velocity �V0	��. We average
over 2�104 realizations. The detail shows the slow decay of E�t�.

FIG. 2. �Color online� Log-log plot of the average number of
collisions N�t� vs t for four values of the parameter �. The initial
velocity is V0=10−6; average over 2�104 realizations.
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l=�−1/b1, Eq. �12� can be written as E�t ,� ,0�
=�−1/b1E�t /�a1/b1 ,1 ,0�. Therefore we have that a1 /b1=−1
and b1=−1/2. A similar analysis for V0	� yields c1=−1/2.
In Fig. 1�a� we see the average energy for different � when
the initial velocity V0	0. On the other hand, in Fig. 3�a� we
see that these average energies collapse onto a universal
curve with exponents defined above. The behavior of the
average energy with � for large velocities �V0	��, but still
below the first spanning curve, is shown in Fig. 1�b�. Using
the same set of exponents we again obtain a collapse of the
renormalized energies �see Fig. 3�b��. Therefore the expo-
nents a1=1/2 and b1=c1=−1/2 described the scaling at
short times.

In the limit t→� �or t	 t2�, the energy obeys the scaling
function given by Eq. �12� but with a different set of expo-
nents, namely, a2, b2, and c2. When V0	0, we can choose
l=�−1/b2 to obtain E�t ,� ,0�=�−1/b2f��−a2/b2t�. From Eq. �8�
and the numerical results discussed just below that equation,
we obtain a2 /b2=−1.49±0.02. Since the energy decays
slowly in the limit t	 t2 �see Eq. �6��, we may write
f��−a2/b2t�	 t−
�−�a2
�/b2. Therefore, we have that �
=−��1/b2�+ �a2 /b2�
�, a2=1.30±0.05, and b2=−0.87±0.02.
In order to determine c2 we use a result �5� connecting the

simplified FUM to the standard model �2�. We transform the
simplified map into a standard map by means of the coordi-
nate change In=2/V*+2�V*−Vn /V*2�, where V* is a typical
mean velocity near to the lowest spanning curve, followed
by a linearization around this value. We obtain the standard
map equations In+1= In−Keff sin �n+1 and �n+1=�n+ In, with
an effective control parameter Keff=4� /V*2. The standard
map has a transition from local to global chaos when K
=Kc	0.972. It turns out that the maximum and minimum
values of V* in the lowest spanning curves furnish values of
Keff of the same order of magnitude of Kc, independent of �.
Thus Keff can be written in terms of scaled variables ��
= lb2� and V*�= lc2V*. Assuming that Keff is invariant �5� we
obtain b2=2c2, which implies that the scaling exponent of
the velocity is c2=−0.44±0.01.

These exponents can also be determined via another pro-
cedure, in which we search for the best collapse of the aver-
age energy onto universal curves for long times. The cases
V0	0 and V0�0 for the average energy as a function of �
are shown in Figs. 1�a� and 1�b�, respectively. By renormal-
izing the variables we obtain a data collapse, as shown in
Figs. 4�a� and 4�b�, respectively.

It turns out that the exponents now are given by a2 /b2
=−1.50±0.01, b2=0.92±0.01, and c2=0.46±0.01. Note that
the two sets of exponents have the same values to within
uncertainty. We therefore take the average of the values ob-
tained with the two different procedures to define our best
estimates, namely, a2=1.35±0.05, b2=−0.90±0.03, and c2
=−0.45±0.01. These exponents describe the scaling in the
long time regime.

The average number of collisions has a similar scaling
form, namely, N�t ,� ,V0�= lN�ldt , le� , lfV0�. Choosing the
scaling factor as l=�−1/e and considering very low initial ve-
locity, we have that N
�−1/ef�t /�d/e ,1 ,0�. Assuming that
f�t /�d/e ,1 ,0�	 t��−��d�/e when t	 t2 and that d /e=a2 /b2

=−1.50±0.01, we can compare this expression with Eq. �9�
to obtain e=2f =1.12±0.05. The collapse of N�t ,� ,0� is
shown in Fig. 5�a�.

Finally let us discuss the decay for the energy, first aver-
aged over the the orbit, and then averaged over the initial
conditions as defined in Eq. �5�. In Fig. 4�b� we show the

slow decay of Ē for long times when V0→0 and �=5
�10−4. A power low best fit furnishes 
=0.051±0.001 with
good correlation. Since the exponent 
 is small we cannot
entirely discard a logarithmic decay.

IV. SUMMARY

Summarizing, we study the simplified Fermi-Ulam model
when the time t is employed as the dynamical variable, in-
stead of the variable n. As shown, this model presents two
crossover times t1 and t2. By virtue of this property we have
scaling laws with distinct sets of exponents. For the first
crossover time, which governs the dynamical aspects of the
average energy for small t values, we analytically established
the exponent values a1=0.5 and b1=c1=−1/2. For the sec-
ond crossover time, which determines the behavior of the
energy for large t, we established that a2=1.35±0.05, b2
=−0.90±0.03, and c2=−0.45±0.01. Using a2, b2, and c2 we

FIG. 3. �Color online� Log-log plot of the renormalized energy
E�t� / l as a function of renormalized time tla1 for four values of �,
when �a� the initial velocity is V0=10−6�� and �b� V0	�. We
average over 2�104 realizations; l=�1/b1, a1=1/2, and b1=c1=
−1/2.
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obtain the collapse of the energy data when t is large. We
emphasize that the scaling behavior holds only for small val-
ues of the renormalized amplitude �. Moreover, this system
presents another feature which has a brief and not difficult
explanation. Eventually, a particle may collide with the mov-
ing wall and lose almost all its energy. When this happens, a
very long time passes until the next collision and, for this
reason, when t	 t2 the average energy decays slowly, as a
power law with a small average exponent 
=0.055±0.005.
This is surprising, since the asymptotic value of the average
energy is constant when we consider the collision number n
as the independent variable. The difference between the two

descriptions is that high and low velocities play a similar role
in the latter description.
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